Math 522 Exam 8 Solutions

1. Find all solutions to the following system of congruences:

$$
\begin{aligned}
x & \equiv & 3 & (\bmod 6) \\
x & \equiv & 7 & (\bmod 10) \\
x & \equiv & 12 & (\bmod 15)
\end{aligned}
$$

We first reduce the congruences as: $x \equiv 3(\bmod 2), x \equiv 3(\bmod 3), x \equiv$ $7(\bmod 2), x \equiv 7(\bmod 5), x \equiv 12(\bmod 3), x \equiv 12(\bmod 5)$. Simplifying and eliminating redundancies, these become $x \equiv 1(\bmod 2), x \equiv$ $0(\bmod 3), x \equiv 2(\bmod 5)$.
Now, $M=30, n_{1}=15, n_{2}=10, n_{3}=6$. We calculate $n_{1}^{-1}=1$ $(\bmod 2), n_{2}^{-1}=1(\bmod 3), n_{3}^{-1}=1(\bmod 5)$. Hence we may take $x=1 n_{1} n_{1}^{-1}+0 n_{2} n_{2}^{-1}+2 n_{3} n_{3}^{-1}=15+12=27$. This solution is unique modulo 30 , hence the set of all solutions is $\{27+30 n: n \in \mathbb{Z}\}$.
2. Let p be an odd prime, and suppose that $x^{2}+1 \equiv 0(\bmod p)$ has exactly two solutions (that are distinct modulo p). Prove that $x^{2}+1 \equiv 0$ $\left(\bmod p^{3}\right)$ has exactly two solutions (that are distinct modulo p^{3}).
Let a, b be the two solutions $\bmod p$; that is, $a^{2}+1 \equiv b^{2}+1 \equiv 0$ $(\bmod p) .{ }^{1}$ Note that $p \nmid a$ since otherwise $1 \equiv 0(\bmod p)$. Similarly, $p \nmid b$.
Consider $f(x)=x^{2}+1$; note that $f^{\prime}(x)=2 x$. If $p \mid f^{\prime}(a)=2 a$, since p is odd we have $p \mid a$; but we have shown that is impossible. Similarly, $p \nmid f^{\prime}(b)$. Hence we may apply Hensel's lifting lemma to find just two solutions a^{\prime} and b^{\prime} to $f(x) \equiv 0\left(\bmod p^{2}\right)$. Further, $a^{\prime}=a+p t$ for some integer t, so $p \nmid a^{\prime}$ since $p \nmid a$. Similarly, $p \nmid b^{\prime}$.
Now, if $p \mid f^{\prime}\left(a^{\prime}\right)=2 a^{\prime}$, since p is odd we have $p \mid a^{\prime}$; but we have shown that is impossible. Similarly, $p \nmid f^{\prime}\left(b^{\prime}\right)$. Hence we may apply Hensel's lifting lemma again to find just two solutions $a^{\prime \prime}, b^{\prime \prime}$ to $f(x)=x^{2}+1 \equiv 0$ $\left(\bmod p^{3}\right)$.
NOTE: In fact, we could continue this inductively to prove that $x^{2}+1 \equiv$ 0 has exactly two solutions modulo p^{k}, for any $k \in \mathbb{N}$. Typically, the solutions will vary as k varies, but there will always be two of them!

[^0]
[^0]: ${ }^{1}$ In fact $a \equiv-b(\bmod p)$ but that's not important here.

